87 RM 27 Hm (N)

2014

HIGHER MATHEMATICS

Full Marks - 80

Pass Marks - 20

Time: Three hours

Attempt all questions.

The figures in the right hand margin indicate full marks for the questions. For Question Nos. 1 to 5, write the letter corresponding to the correct answer.

- 1. The harmonic mean between a and b is
 - (A) $\frac{a+b}{ab}$
 - (B) $\frac{ab}{a+b}$
 - (C) $\frac{a+b}{2ab}$
 - (D) $\frac{2ab}{a+b}$
- 2. The coefficient of x^4 in the expansion of $\left(x \frac{1}{x}\right)^{10}$ is
 - (A) -120
 - (B) 120
 - (C) -210
 - (D) 210

3. If
$$A = \begin{bmatrix} -1 & -1 \\ k & 2 \end{bmatrix}$$
 and $A^2 = A$, then the value of k is

- (A) 0
- (B) 1
- (C) 2
- (D) -
- 4. The value of tan (-480°) is
 - (A) $-\sqrt{3}$
 - (B) √3
 - (C) 1/3

$$(D)$$
 $\frac{1}{\sqrt{3}}$

- The angle between two equal forces P and P when their resultant is also equal to P, is
 - (A) 60°
 - (B) 45°
 - (C) 120°
 - (D) 90°
- Is addition a binary operation on the set of all odd integers? Give reason for your answer.
- 7. If P(n) is the statement " n^2+2 is divisible by 3", show that P(7) is true. 1
- 8. Define the transpose of a matrix.
- 9. If A and B are symmetric (of the same order), show that A B is symmetric.
- 10. Define a "reciprocal expression".
- 11. Find the angles in the range 360° < θ < 360° coterminus with 60°.

27 PM 27 Hm (NI)

2

Contd.

- 12. When are forces acting on a body said to be in equilibrium?
- 13. What are the resolved parts of a force of 50 kgwt, if the inclination of the force to one of the resolved parts is 30°?
- 14. Prove that the binary operation * on \mathbb{Z} defined by a * b = a + b 3, is associative.
- 15. Find which term of the GP: 9, 3, 1, ... is $\frac{1}{243}$.
- 16. Find the middle term in the expansion of $(x + y)^6$.
- 17. Find 3A 2B when $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix}$
- 18. If A + B + C = 180° prove that $\tan\left(A + \frac{B}{2}\right) = \cot\left(\frac{C A}{2}\right)$
- Find the sum of the first n terms of a GP where first term and common ratio are a and r respectively.
- 20. If $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}$, show that AB = AC
- 21. Prove the identity: $27(x+y+z)^3 (x+2y)^3 (y+2z)^3 (z+2x)^3$ = 3(x+3y+2z)(2x+y+3z)(3x+2y+z)
- 22. If a + b + c = 0, prove that $b^{2} + bc + c^{2} = -(bc + ca + ab)$
- 23. Solve for θ (0° < θ < 360°): $\tan^2 \theta + \cot^2 \theta = 2$
- 24. If three forces acting at a point be such as can be represented in magnitude, direction and sense by three sides of a triangle taken in order, then prove that the forces are in equilibrium.
 3

- Construct the composition table for the set $S = \{1, 2, 3, 4, 5, 6\}$ with respect to the binary operation of multiplication modulo 7. From the table find the identity element and the inverse of each element of S.
- 26. Prove by Mathematical Induction that, for every n∈ N,

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
Or

 $3^{2n} - 1$ is divisible by 8.

- 27. Prove that, every square matrix can be expressed in one and only one way, as the sum of a symmetric matrix and a skew symmetric matrix. 4
- 28. State and prove Binomial Theorem for a positive integral index. 5
- 29. Factorise: $2x^6 3x^5 3x^4 + 3x^2 + 3x 2$

Resolve into two quadratic factors: $x^4 - 7x^3y + 14x^2y^2 - 14xy^3 + 4y^4$

- 30. Find the trigonometric ratios of $(180^{\circ} + \theta)$ in terms of those of θ .
- The digitis of a three-digit number are in AP and their sum is 15. The number obtained by reversing the digits is 594 more than the original number. Find the number.
- 32. Forces of magnitude P, 2P, 3P, 4P, 5P respectively act at the angular point A of a regular hexagon ABCDEF towards the other angular points taken in order. Show that the magnitude of the resultant is $2\sqrt{19+10\sqrt{3}}$ P and $\tan\theta = \frac{5+4\sqrt{3}}{\sqrt{3}}$ where θ is the angle which the resultant makes with AB.

Or

The resultant of forces P and Q is R; if Q is doubled, R is doubled and if Q is reversed, R is again doubled. Show that $P^2: Q^2: R^2 = 2:3:2$.

although B ≠ C.